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Abstract

In this paper, we tackle the task of establishing dense vi-
sual correspondences between images containing objects of
the same category. This is a challenging task due to large
intra-class variations and a lack of dense pixel level anno-
tations. We propose a convolutional neural network archi-
tecture, called adaptive neighbourhood consensus network
(ANC-Net), that can be trained end-to-end with sparse key-
point annotations, to handle this challenge. At the core of
ANC-Net is our proposed non-isotropic 4D convolution ker-
nel, which forms the building block for the adaptive neigh-
bourhood consensus module for robust matching. We also
introduce a simple and efficient multi-scale self-similarity
module in ANC-Net to make the learned feature robust to
intra-class variations. Furthermore, we propose a novel
orthogonal loss that can enforce the one-to-one matching
constraint. We thoroughly evaluate the effectiveness of our
method on various benchmarks, where it substantially out-
performs state-of-the-art methods.

1. Introduction
Establishing visual correspondences has long been a fun-

damental problem in computer vision. It has seen variety
of applications in areas such as 3D reconstruction [1, 33],
image editing [6], scene understanding [24], and object de-
tection [4].

Earlier works mainly focused on estimating correspon-
dences for images of the same scene or object (i.e. instance-
level correspondences) using hand-crafted features such
as SIFT [26] or HOG [3]. Recently, finding correspon-
dences for different instances from the same category (i.e.
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semantic correspondences) has attracted more and more
attention[2, 9, 32, 10, 27]. In this paper, we focus on the
problem of establishing dense correspondences for a pair
of images depicting different instances from the same cate-
gory. This task is extremely challenging due to large intra-
class variation in properties such as colour, scale, pose, and
illumination. Further, it is unreasonably expensive, if not
impossible, to provide dense annotations for such image
pairs.

To deal with the challenges mentioned above, we in-
troduce a convolutional neural network (CNN), called
Adaptive Neighbourhood Consensus Network (ANC-Net),
which can produce reliable semantic correspondences with-
out requiring dense human annotations. ANC-Net takes a
pair of images as input and predicts a 4D correlation map,
containing the matching scores for all possible matches be-
tween the two images. The most likely matches can then
be retrieved by finding the matches giving the maximum
matching scores.

ANC-Net consists of a CNN feature extractor, a multi-
scale self-similarity module, and an adaptive neighbour-
hood consensus module. At the core of ANC-Net is
our proposed non-isotropic 4D convolution, which incor-
porates an adaptive neighbourhood consensus constraint
for robust matching, and our proposed multi-scale self-
similarity module, which aggregates multiple self-similarity
features, which are insensitive to intra-class appearance
variation[17].

CNN features have been very popular for the task of
correspondence estimation due to their promising perfor-
mance, and most state-of-the-art methods are based on
CNN features [32, 27, 10, 17, 2]. Like other methods,
ANC-Net also extracts features with a pre-trained CNN.
However, instead of directly using the CNN features to cal-
culate matching scores, we introduce the multi-scale self-
similarity. Self-similarity has been introduced in existing
methods [10, 17]. Unlike other methods that either use
self-similarity as an extra feature alongside raw CNN fea-
tures [10], or use computationally expensive irregular self-
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Figure 1: An overview of ANC-Net. Given a pair of images (Is, It), ANC-Net can predict their pixel-wise semantic
correspondences. A CNN backbone F first extracts features Fs and Ft. Our multi-scale self-similarity module then captures
the self-similarity features Ss and St based on Fs and Ft. We can then obtain Cs from Ss and St, and Cf from Fs and Ft.
Taking Cf and Cs as input, our ANC moduleN will predict a refined �C, from which the pixel-wise correspondences can be
retrieved with interpolation.

similarity patterns [17], our self-similarity features are both
computationally cheap to obtain, and do not need combin-
ing with raw CNN features, whist still capturing the com-
plex self-similarity patterns.

With reliable feature representation, the matching scores
for each individual feature pair can then be calculated.
However, as the individual feature pairs do not contain
any matching validity information, matching by direct fea-
ture comparison can be rather noisy. To mitigate this, cor-
respondence validity constraints should be applied to ob-
tain reliable matching scores. Neighbourhood consensus,
which measures how many pairs are matched in the neigh-
bourhoods of the two points under consideration, turns to
be one of the most effective correspondence validity con-
straints, and has been successfully introduced in recent
work [32, 10]. However, [32] and [10] assume neighbour-
hoods of the same size for the two points in consideration.
Unfortunately, this assumption does not hold in practice, as
objects in real images typically have different scales and
shapes. Therefore, adopting neighbourhoods of the same
size is very likely to be affected by unrelated neighbours
(e.g. background parts). To address this issue, we propose
an adaptive neighbourhood consensus module, which can
select the correct neighbourhoods.

As mentioned earlier, the cost of labelling ground truth
means fully supervised learning with dense annotations is
not feasible. Instead, our model can effectively make use
of sparse key-point annotations. To enforce the one-to-one
mapping constraint, which is crucial for plausible corre-
spondences, we further propose a novel one-to-one map-
ping loss, called orthogonal loss, to regularise the training.

To summarise, our contributions are four fold:
� We introduce ANC-Net for the task of dense semantic

correspondence estimation, which can be trained with

sparse key-point annotations.
� We propose a non-isotropic 4D convolutional kernel,

which forms the building block for the adaptive neigh-
bourhood consensus module for robust matching.
� We propose a simple and efficient multi-scale self-

similarity to make the feature matching robust to intra-
class variation.
� We propose a novel orthogonal loss that can enforce

the one-to-one matching constraint, encouraging plau-
sible matching results.

We thoroughly evaluate the effectiveness of our method
on various benchmarks, where it substantially outperforms
state-of-the-art methods. Our code can be found at http:
//ancnet.avlcode.org/.

2. Related work
The semantic correspondence estimation problem is of-

ten considered as either a pixel-wise matching problem,
an image alignment problem, or a flow estimation prob-
lem. Earlier works used hand-crafted features, such as
SIFT [26] or HOG [3], to establish semantic correspon-
dences [24, 15, 11, 8, 7, 35]. Here, we briefly review recent
CNN based methods.
Pixel-wise matching. Long et al. [25] transferred the fea-
tures pre-trained on an image classification task to pixel-
wise correspondence estimation. Choy et al. [2] introduced
a method to learn a feature embedding for the correspon-
dence problem, by pulling positive features pairs close and
pushing negative feature pairs away. Han et al. [9] proposed
a CNN model that tries to match image patches consider-
ing both appearance and geometry information, and obtains
the pixel-wise correspondences by interpolation. Novotny
et al. [28] introduced a method to learn geometrically stable
features with self-supervised learning by applying a syn-
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thetic warp to the images. More recently, Rocco et al. [32]
proposed to construct a CNN model that incorporates neigh-
bourhood consensus information to re�ne the 4D tensor
storing all the matching scores, which are obtained from
pre-trained CNN features. Huang et al. [10] introduced
a method to incorporate self-similarity based on [32] and
fuse different features with an attention mechanism. Min
et al. [27] showed that effectively combining features ex-
tracted from different layers can provide signi�cant bene�ts
for the dense semantic correspondence estimation task.
Image alignment. Rocco et al. [30] developed a CNN ar-
chitecture that can predict the global geometric transfor-
mation between two images by training on synthetically
warped data. Seo et al. [34] improved [30] by introducing
attention based offset-aware correlation kernels. Rocco et
al. [31] presented an end-to-end trainable CNN architecture
that uses weak image-level supervision, which is trained by
a soft inlier counting loss in a similar spirit to RANSAC.
Jeon et al. [13] introduced a hierarchical learning procedure
to progressively learn af�ne transformations to align the im-
ages in a chaos-to-�ne manner. Kim et al. [16] introduced to
a recurrent transformer network, which is trained with an it-
erative process and can predict the transformations between
a pair of images.
Flow estimation. Fischer et al. [5] introduced an end-
to-end trainable model called FlowNet, which is trained
on synthetic data to predict optical �ow. FlowNet is fur-
ther improved by Ilg et al. [12] in several aspects. Kim et
al. [17] proposed a learnable self-similarity feature, which
is then used to estimate an dense af�ne transformation �ow
for each feature location. The semantic correspondences
can then be obtained by applying such transformations.
Lee et al. [22] introduced a method to use images anno-
tated with binary foreground masks, and subjected to syn-
thetic geometric deformations, to train a CNN model with a
mask consistency loss and a �ow consistency loss. Besides
these, there are also some methods that learn the �ow using
videos [36, 20] by considering temporal consistency.

3. Method

Given a pair of images (I s, I t ), our objective is to �nd
pixel-wise correspondences between the two images. We
propose a CNN, ANC-Net, which takes (I s, I t ) as input
and produces a 4D correlation map containing the matching
scores for all possible pairs in the feature space of the two
images. Pixel-wise correspondence then can be extracted by
interpolation among the most likely matches in the feature
space. The model can be trained with a supervised loss on
sparse key-point annotations in an end-to-end manner. To
encourage one-to-one matching, we propose using a novel
loss, called the orthogonal loss, together with the supervised
loss on sparse key-point annotations, for training our model.

Figure 1 illustrates the main architecture of our net-

work. It consists of a feature extractorF , a multi-scale self-
similarity module, and an adaptive neighbourhood consen-
sus (ANC) moduleN . The feature extractorF is composed
of a sequence of standard convolutional layers. We �rst feed
the two images intoF , and get a pair of feature mapsF s and
F t . The multi-scale self-similarity moduleS consists of
two convolutional layers followed by a concatenation oper-
ation to fuse them into the multi-scale features. WithF s and
F t , S will produce the multi-scale self-similarity feature
mapsSs andSt which capture the complex self-similarity
patterns. We can then obtain the 4D correlation mapC s

from Ss andSt , and the 4D correlation mapC f from F s

andF t . However,C s andC f are often noisy as they lack
the constraints to enforce the correspondence validity, and
thus are unreliable for directly extracting correspondences.
Our proposed ANC moduleN , which is realised with a
stack of non-isotropic 4D convolutions, takesC s andC f

as input, re�ning them by considering neighbourhoods with
varying sizes. Finally, the ANC module combines the re-
�ned correlation maps by simply summing up the two, pro-
ducing a single 4D correlation map�C, from which reliable
correspondences can be retrieved.C s is introduced to cap-
ture the second order (and higher) cues derived from the
raw features.C s shares a similar structure toC f , allowing
both to be re�ned using a neighbourhood consensus mod-
ule without introducing extra learnable parameters. Exper-
iments show that the proposed self-similarity module out-
performs similar methods [17, 10].

In this section, we will �rst introduce the multi-scale
self-similarity module in Section 3.1. We then, in Sec-
tion 3.2, describe the adaptive neighbourhood consensus
matching validity module. Section 3.3 will discuss the ap-
proach to enforcing global constraints over the output of
the neighbourhood consensus by maximising an a posteri-
ori estimation. Finally, we describe the learning objectives
for training our network in Section 3.4.

3.1. Multiscale selfsimilarity

Self-similarity has been shown to be effective for the task
of semantic correspondence estimation [17, 10]. Given a
feature mapF 2 Rh f � w f � d established by the backbone
feature extractor, a self-similarity map measures the local
similarity pattern at each feature location. One way to ex-
tract the self-similarity feature for the feature vectorf ij at
(i; j ) in F is to calculate the cosine distance between itself
and its neighbours. Figure 2 illustrates the self-similarity
module when considering the3 � 3 neighbours of a given
feature vector. This approach results in 9 self-similarity
scores for eachf ij . We further vectorise each of the3 � 3
self-similarity scores into a 9-vector, which make up the
self-similarity feature mapS0 2 Rh f � w f � 9.

To further capture the correlations among different self-
similarity features, we apply two 2D convolutional layers



Figure 2:Self-similarity module. The top left �gure illus-
trates the calculation of a self-similarity score over the 3�
3 window. Speci�cally, the cosine distances between each
of the 9 features and the centre feature are calculated and
then vectorised into theS0. In the bottom, we �rst calculate
theS0 from the feature mapF, and then perform two levels
of 2D convolutions, each followed by an activation function
(ReLU) to produceS1 andS2. Finally, the initial similar-
ity scoreS0, its �rst scale �ltered featuresS1, and second
�ltered featuresS2 are concatenated together to form �nal
feature mapS.

with zero padding onS0. Given the output feature maps
for the two layers areS1 andS2, we then concatenate the
3-scalesS0, S1, andS2 together to form an enhanced fea-
ture mapS, which will serve as the input to the later layers.
With the feature mapsSs andSt of source and target images
respectively, we can obtain the 4D correlation mapC s.

Unlike DCCNet [10], where the self-similarity of a sin-
gle scale is considered, and the self-similarity scores are
then concatenated withF and convolved using a point-wise
convolution which is intended to use the self-similarity to
re-weight the raw features, our method avoids fusing withF
to reduce redundancy, as the features inF have already been
implicitly included inS0. Further, we extract more complex
self-similarities than DCCNet and make use of multi-scale
self-similarities to bootstrap the features. Thus, we capture
more complex features from a much larger local window as
well as second order (and higher) information.

As will be shown in the experiments, our multi-scale
self-similarity module performs better than that of DCCNet.
It is also worth noting that FCSS [17] proposes a similar
design, however their self-similarity score is de�ned using
a set of irregular point pairs within the local window which
is more complex to implement. In contrast, we adopt the
design of correlating the centre feature with neighbours for
simplicity and computation ef�ciency, and as a result, our
simpli�ed self-similarity module outperforms FCSS in all
benchmarks.

BothC f andC s are complementary to each other as we

hypothesise they are dominated by �rst order and higher or-
der cues respectively. They will be re�ned by the following
ANC module independently and then combined.

3.2. Adaptive neighbourhood consensus

Neighbourhood consensus has been shown to be effec-
tive for �ltering the noisy 4D correlation map [32, 10]. Mul-
tiple layers of theisotropic 4D convolutional kernels,i.e.
kernels with identical size in each dimension, are applied
on the 4D correlation map to re�ne it. The isotropic 4D
convolution with size5 � 5 � 5 � 5 is illustrated in top left
of Figure 3. It can be seen that the kernel establishes two
neighbourhoods with the same size for both images. How-
ever, objects in real images often have varying scales and
shapes, therefore, two neighbourhoods depicting the same
semantic meaning are very likely to have different sizes.
Thus, using neighbourhoods of the same size for both im-
ages may introduce noise (e.g. unrelated background) when
determining a match.

To deal with the problem, we introduce the adaptive
neighbourhood consensus (ANC) module which contains a
set ofnon-isotropic4D convolutional layers. As illustrated
in the top right of Figure 3, the non-isotropic 4D convolu-
tion has dimensions of3 � 3 � 5 � 5, de�ning the neigh-
bourhood of3 � 3 and5 � 5.

To handle objects in real images with varying scales and
shapes, we can combine ournon-isotropic4D kernels with
isotropic4D kernels so that the model can dynamically de-
termine which set of convolutions should be activated to
handle objects of various sizes. We consider 3 candidate
architectures (shown in Figure 3) in our experiments with
each non-isotropic 4D convolution using zero padding. Un-
less stated otherwise, we use (d) in our experiments, as it
gives the best performance in our evaluation. This is pos-
sibly because (d) allows for more scale variation than the
others. This choice might ignore better designs than (d), but
the main point in this work is to demonstrate the effective-
ness of the ANC module.

It is also worth noting that it is unnecessary to have both
p � p � q � q andq� q� p � p kernels in the model where
p andq are the sizes of some kernel dimensions, as the bidi-
rectional neighbourhood consensus �lter in Eq. 1 (which
will be explained next) effectively tries both the con�gura-
tions of small vs large neighbourhood and large vs small
by reversing the matching direction, and the effect of both
�lters are equivalent due to the bidirectional matching.

Let N be the module of our adaptive neighbourhood
consensus. It takes a 4D correlation mapC s or C f as input
and re�ning them. Their re�ned counterparts can then be
combined to form�C. We applyN to both matching direc-
tions (i.e. matchingI s to I t and matchingI t to I s), so that
our model is invariant to the order of the images. More im-
portantly, this allowsN to only include onep � p � q � q



Figure 3: Adaptive neighbourhood consensus. The top
row illustrates an isotropic and a non-isotropic 4D convolu-
tional kernel. The bottom row illustrates the architecture of
(a) the non-isotropic in NC-Net [32] and (b-d) three ANC
candidates.� denotes concatenation of feature maps. The
numbersf 1; 16; 16; 1g denote the input and output channels
for the 4D kernels. The non-isotropic 4D convolutions are
always zero padded so that the size of the 4D correlation
remains the same size after each convolution.

non-isotropic kernel to handle the small to large as well as
the large to small neighbourhood. In particular, the re�ned
4D correlation map can be obtained by

�C = N (C s)+
�
N

�
C>

s

�� >
+ N (C f )+

�
N

�
C>

f

�� >
; (1)

where> denotes the swapping of the matching direction
given an image pair,i.e., (C> ) ijkl = Cklij .

3.3. Most likely matches

After obtaining the re�ned 4D correlation map�C, we
follow [32] to apply soft mutual nearest neighbour �lter-
ing, i.e., for each�cijcd in �C, we replace it byĉijcd =
r s

ijkl r t
ijkl �cijkl where r s

ijkl = �cijkl

max ab �cabkl
and r t

ijkl =
�cijkl

max cd �cijcd
, which downweights the scores of matches that

are not mutual nearest neighbours. Next, we perform soft-
max normalisation to the scoreŝcijkl . The normalised
scores can be interpreted as the matching probabilities. In
particular, the probability of a given point at(i; j ) in I s be-
ing matched with an arbitrary point(k; l ) in I t is

vt
ijkl =

exp (ĉijkl )
P

cd exp (ĉijcd )
: (2)

Similarly, the probability of a given point at(k; l ) in I t be-
ing matched with an arbitrary point(i; j ) in I s is

vs
ijkl =

exp (ĉijkl )
P

ab exp (ĉabkl )
: (3)

For a given position(i; j ) in I s, the most likely match(k; l )
in I t can be found by

(k; l ) = arg max
cd

vt
ijcd : (4)

Similarly, for a given position(k; l ) in I t , the most likely
match(i; j ) in I s can be found by

(i; j ) = arg max
ab

vs
abkl : (5)

After retrieving the correspondences in the feature space
with Eq. 4 and Eq. 5, the pixel-wise correspondences can
be obtained by interpolation.

3.4. Learning objective

For the tasks of establishing dense semantic correspon-
dences, it is impossible to obtain dense ground-truth la-
belling for all training image pairs due to the huge amount
of human labour required. In practice, one can easily label
only a few key-points of the objects in an image. These
key-points often indicate the objects parts with concrete
semantic meaning (e.g. eyes, mouths, body joints, etc.).
Sparse key-point annotations are included in many exist-
ing datasets including PF-PASCAL [8], Spair-71k [27],
CUB [37] and others. There are also other forms of al-
ternative annotations, such as image level pairwise anno-
tations [32, 10], or object masks [22]. In this paper, we are
interested in the sparse key-point annotations, as they are
more directly linked to our objective to learn semantic cor-
respondences.

The sparse key-point annotations provide a straightfor-
ward way to train a CNN model for semantic matching,
in which we minimise the distances between features of
matched key-points (e.g. [2]). However, this is not appli-
cable to ANC, because the feature space ANC operates is a
4D correlation map, rather than a 3D feature map consist-
ing of per pixel feature vectors. Therefore, we introduce a
simple but effective supervised loss on 4D correlation maps
to train our model.

For each key-point(x; y) in the image (e.g. Figure 4(a)),
we �rst re-scale(x; y) to the same resolution as the fea-
ture map, giving the re-scaled coordinates(xc; yc). Since
(xc; yc) is a sub-pixel coordinate, it can not be used as the
target in the feature map directly. Instead, we can sim-
ply pick the nearest neighbour(xn ; yn ) of (xc; yc) in the
feature map to be the target (see Figure 4 (b)). However,
this will introduce errors caused by ignoring the offset be-
tween the(xn ; yn ) and (xc; yc). As the resolution of the



Figure 4:Generating the ground-truth probability map
for each key point. (a) The key point(x; y) is a key point
in the image coordinates. (b)(xn ; yn ) is the nearest neigh-
bour of (xc; yc) which is re-scaled coordinate(x; y) to the
feature map resolution. (c)(x1

n ; y1
n ), (x2

n ; y2
n ), (x3

n ; y3
n ), and

(x4
n ; y4

n ) are the four nearest neighbours to(xc; yc).

feature map is much smaller than that of the image, small
offsets in the feature map will cause large errors in the im-
age. To compensate for the offset, we take the four near-
est neighbours into consideration (see Figure 4 (c)), rather
than the single nearest neighbour. In particular, we pick the
four nearest neighbours(x1

n ; y1
n ), (x2

n ; y2
n ), (x3

n ; y3
n ), and

(x4
n ; y4

n ), and set scalar valuest1, t2, t3, and t4 to them
representing the probability of being the considered as tar-
get. t1, t2, t3, and t4 are proportional to their distances
to (xc; yc), and

P 4
j =1 t j = 1 . We then apply 2D Gaus-

sian smoothing on the four nearest neighbour probability
map obtained above. We found that such smoothing can
effectively enhance the performance. In this way, each key-
point location annotation is converted into a 2D probability
map. Next, we reshape the smoothed 2D probability map
into a (hc � wc)-vector for the key-point(x; y), followed
by L 2 normalisation. For the source imageI s containingn
key-points, we can therefore construct its target as a matrix
M gt 2 Rn � (h c � wc ) with each row being a probability vec-
tor of a ground truth matching key-point in the target image
I t . LetM gt andM be the ground truth and prediction. Note
that M can be obtained by �attening the �rst two and last
two dimentions of�C (after mutual nearest neighbour �lter-
ing), and taking the samen rows corresponding toM gt .
The loss function is then the Frobenius Norm between them
for both matching directions:

L k = kM s � M s
gt kF + kM t � M t

gt kF ; (6)

whereM s denotes target probability map fromI s to I t and
M t denotes inverse direction.

3.5. Enforcing onetoone matching

The one-to-one mapping (i.e. one point can be only
matched to one other point) turns out to be a useful clue
for improve the matching accuracy in classic graph match-
ing (GM)[38, 14], which aims to match two given point sets

(graphs) in two images. Ideally, for our semantic correspon-
dence estimation task, the result should also agree with the
one-to-one mapping constraint. This is especially helpful
when there exist some repetitive patterns in the image (e.g.
a building with multiple identical windows). GM methods
always assume that the number of key-points in two images
are exactly the same. However, this is often not the case in
real applications. For example, due to pose variation, some
key-points may be visible in one image, but not in the other.
In this case, there exist one-to-none mappings in both im-
ages. A plausible one-to-one matching constraint should be
able to ignore the one-to-none matches in the data automat-
ically. To handle this problem, we introduce a novel loss,
named the orthogonal loss, as it was inspired by the non-
negative orthogonal GM algorithm [14]. The idea is that
whenMM > is an identity matrixI , each row ofM con-
tains only one element, and the rest are zero, so we include
a difference betweenMM > and I in the loss. However,
in reality, M may contain zero rows for one-to-none case.
Therefore, our orthogonal loss term can be de�ned as

L o = kMM > � M gt M >
gt kF ; (7)

wherek:kF is a the Frobenius norm. It is worth noting that
M gt M >

gt has zeros on its diagonal that allows both one-
to-one and one-to-none matches to be accurately penalised.
The orthogonal loss has to be combined with Eq. 6 as it
has no impact over the prediction accuracy. It simply reg-
ularises the model by encouraging one-to-one predictions.
The overall loss of our model can be written as

L = L k + � L m
o ; (8)

where � is a weight balancing term, which is set to
0:001 in all our experiments, andL m

o = kM sM s> �
M s

gt M
s
gt

> kF + kM t M t > � M t
gt M

t
gt

> kF by considering
both matching directions.

4. Experimental results

4.1. Datasets and implementation details

Datasets.We evaluate our method on four public datasets,
namely, PF-PASCAL [8], Spair-71k [27], and CUB [37].
PF-PASCAL contains 1351 image pairs, which is approxi-
mately divided into 700 pairs for training 300 pairs for val-
idation and 300 pairs for testing [9, 32]. Spair-71k dataset
is much more challenging than the others as it contains both
large view point differences and scale differences. We use
the 12,234 pairs of testing pairs. Spair-71k is only used to
evaluate the transferrability of the models trained on the PF-
PASCAL training split. The CUB dataset contains 11,788
images of various species of birds with large variation of
appearance, shape and pose. We randomly sample about
10,000 pairs from the CUB training data and test using the
5,000 pairs selected by [19].



Implementation details. Our ANC-Net is implemented
in the PyTorch [29] framework. We experiment with
three convolutional networks as feature backbones, namely,
ResNet-50, ResNet-101 and ResNeXt-101. All of them are
pre-trained on ImageNet [23], and the parameters are �xed
during the training of our ANC-Net. The size of the self-
similarity window is set to5� 5, and channels of ANC mod-
ule are set tof 1; 16; 16; 1g. The model is initially trained
for 10 epochs using an Adam optimiser [18] with a learning
rate of0:001and applying Gaussian smoothing with a ker-
nel size of 5 for ground truth probability map generation.
The model is then �ne-tuned for 5 epochs applying Gaus-
sian smoothing with a kernel size of 3 followed by another
5 epochs with a kernel size of 0. To compare with DCC-
Net [10], we implemented it based on the publicly available
of�cial implementation of NC-Net [32]. Our implementa-
tion slightly surpassed the reported accuracy in [10]. We
also implemented UCNResNet-101based on the publicly avail-
able of�cial code [2].
Evaluation metric. Following common practice, we use
the percentage of correct key-points (PCK@� ) as our eval-
uation metric. We report the results under PCK threshold
� = 0 :1. � is set w.r.t. max(wr ; hr ) wherewr andhr are
the width and height of either the image or the object bound-
ing box. Following existing works [9, 32, 21, 27], we use�
w.r.t. the image size on PF-PASCAL, and w.r.t. the object
bounding box on CUB and Spair-71k.

Table 1:Comparison with state-of-the-art methods.

Methods PF-PASCAL CUB Spair-71k

Identity mapping 37.0 14.6 3.7

UCNGoogLeNet[2] 55.6 48.3 15.1
UCNResNet-101[2] 75.1 52.1 17.7
SCNetVGG-16 [9] 72.2 - -
WeakalignResNet-101[31] 74.8 - 21.1
RTNetResNet-101[16] 75.9 - -
NC-NetResNet-101[32] 78.9 64.7 26.4
DCCNetResNet-101[10] 82.6 66.1 26.7
SFNetResNet-101[21] 81.9 - 26.0
HPFResNet-101[27] 84.8 - 28.2
HPFResNet-101-FCN[27] 88.3 - -

ANCResNet-50 83.7 69.6 27.1
ANCResNet-101 86.1 72.4 28.7
ANCResNeXt-101 88.7 74.1 30.1

4.2. Benchmark comparisons

We compare our method with recent state-of-the-art
methods, and present our results in Table 1. For results
on PF-PASCAL and Spair-71k, all methods are trained on
PF-PASCAL. For results on CUB, the methods are trained
and tested on CUB. We used three different feature back-
bones,i.e. ResNet-50, ResNet-101, and ResNext-101 for
our method. When using an identical feature backbone

(ResNet-101) with other methods, our ANC-Net achieves
the best performance on all the datasets. For example,
we achieve86:1% and28:7% on PF-PASCAL and Spair-
71k respectively. Note that even with the ResNet-50 fea-
ture backbone, our model outperforms NC-Net and DCC-
Net with the more powerful ResNet-101 feature backbone
on all datasets. Further, when we replace our feature back-
bone with ResNext-101, the performance of our method can
be further boosted on all datasets (86:1% to 88:7% on PF-
PASCAL, 72:4% to 74:1% on CUB, and28:7% to 30:1%
on Spair-71k). Our results are also better than the previous
best results achieved HPF with ResNet-101-FCN. The re-
sults clearly demonstrate the effectiveness of our approach.
Unbiased evaluation on FP-PASCAL. As discussed
in [21], there are 302 images in the training split overlap-
ping with either target or source images in the testing split.
In terms of images pairs, there are 95 target-to-source pairs
in the training split overlapping with the source-to-target
pairs in the testing split. Hence, we further conduct an unbi-
ased evaluation by excluding the 302 images and the 95 im-
age pairs respectively. The results are shown in Table 2. Our
method consistently outperforms NC-Net and DCCNet.

Table 2:Unbiased evaluation on PF-PASCAL.

Methods Original w/o 95 w/o 302

NC-NetResNet-101[32] 78.9 78.8 80.3
DCCNetResNet-101[10] 82.6 78.7 75.7
ANC-NetResNet-101 86.1 84.2 84.5

4.3. Ablation study

In the ablation experiments, we analyse the effectiveness
of all the proposed modules of ANC-Net on PF-PASCAL,
with ResNet-101 as the feature backbone. We experi-
ment on four variants of our ANC-Net, namely, ANC-Net
(our model with all components), ANC-Net w/o ANC (our
model without ANC,i.e. replacing our non-isotropic 4D
kernels with the isotropic counterparts), ANC-Net w/o MS
(our model with out the multi-scale self-similarity), and
ANC-Net w/o Orth (our model trained without orthogonal
loss). We also evaluate the three ANC module candidates,
denoted as, ANCb, ANCc and ANCd in Figure 3. We also
compare with NC-Net and DCCNet. For a fair comparison
with them, we also retrain them with the same sparse anno-
tations. The retrained NC-Net is the plain baseline of our
method, and the retrained DCCNet can be compared with
ANC-Net w/o ANC module for evaluating our multi-scale
self-similarity module against the self-similarity module of
DCCNet. The results are reported in Table 3. As can be
seen, when we remove each of our proposed modules, the
performance drops, showing that all our proposed modules
are effective. However, ANC-Net and all its variants per-
form consistently better than the retrained NC-Net and DC-



CNet as well as the original NC-Net and DCCNet. Among
the three ANC architectures in Figure 3, ANCd performs
better than the other two by a noticeable margin. This might
be explained by the fact that ANCd contains more �exible
feature combination paths to deal with objects having more
severe scale variations.

Table 3:Ablation study experimental results.

Method PCK@0.1

NC-Net [32] (original/retrain) 78.9/81.9
DCCNet [10] (original/retrain) 82.6/83.7

ANC-Net w/o ANC 84.1
ANC-Net w/o MS 84.3
ANC-Net w/o Orth 85.9
ANC-Net w/ ANCb 82.7
ANC-Net w/ ANCc 83.8
ANC-Net w/ ANCd 86.1

4.4. Qualitative evaluations

Figure 5:Predicted correspondence and correlation map
for a query key-point. The �rst column shows the source
images with a query key-point marked with cyan cross.
The remaining columns show the correlation maps super-
imposed with the target image. The red and cyan crosses
represent the prediction and the ground truth respectively.
ANC-Net predicts single-peak correlation maps, avoiding
catastrophic failure between distant, but ambiguous key-
points, such as the legs of the dog in the �rst row. Best
viewed in electronic form.

We show two sets of qualitative experiments. The �rst
set of qualitative experiments is shown in Figure 5. It in-
cludes examples of key-points with some degree of am-
biguity, such as the limbs of an animal or a table. With
both NC-Net and DCCNet, it can be seen that there are of-
ten multiple peaks in the correlation maps. In some cases,
this can lead to failures where, although the key-points look

Figure 6: Dense correspondence prediction.Given the
correlation map predicted by the model, we compute a
dense �ow �eld to warp the source image to the target im-
age. ANC-Net can capture the scale of the objects better
than other methods. Best viewed in electronic form.

alike, they are far from the true correspondence. In contrast,
ANC-Net tends to produce correlation maps with a single
dominant peak. This drastically reduces the occurrence of
these failures due to the ambiguous nature of a key-point.
We qualitatively evaluate the dense correspondence predic-
tion of ANC-Net in Figure 6. From a correlation map pre-
dicted by the network, we compute a dense �ow �eld, which
maps pixel locations from the source to the target image. In
general, ANC-Net and NC-Net preserve more details in the
warping than DCCNet, and ANC-Net is able to capture the
scale of the target more accurately.

5. Conclusion

In this paper, we have proposed a convolutional neu-
ral network, called ANC-Net, for dense semantic match-
ing. ANC-Net takes a pair of images depicting different ob-
jects from the same category as input, and produces a dense
4D correlation map containing all the pair-wise matches
in the feature space. Pixel-wise semantic correspondences
can then be extracted from the 4D correlation map. ANC-
Net can be trained end-to-end with sparse key-point anno-
tations. At the core of ANC-Net is our proposed 4D non-
isotropic convolution kernels, which incorporates an adap-
tive neighbourhood consensus constraint for robust match-
ing, and our proposed multi-scale self-similarity module,
which aggregates multiple self-similarity features that are
insensitive to intra-class appearance variation. We also pro-
posed a novel loss, called orthogonal loss, that can en-
force a one-to-one matching constraint, encouraging plau-
sible matching results. We have thoroughly evaluated the
effectiveness of our method on various benchmarks, and it
substantially outperforms state-of-the-art methods.


